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ABSTRACT

The nonlinear equations of motion for an incompressible simple fluid ,

occupying a fixed bounded container , are formulated on the basis of the

~‘finite-linear~~viscoelastic theory for materials with fading memory ; this

formal boundary-initial value problem is then viewed as a nonlinear abstract

evolution equation on a certain Hu bert space. It is shown that a linearized

version of this evolution equation is associated with a linear dynamical

system on this Hilbert space , and several stability and asymptotic behavior

results for this linearized problem are proved through the use of Liapunov

stability methods . On the assumption that the original nonlinear evolution

equation also is associated with some dynamical system on the same space, it

is shown that the rest condition of the fluid is stable and all motions are

bounded. The Liapunov function employed for this purpose can be interpreted

as a mechanical energy function for the fluid.~

Key words:

simple fluid , viscoe lastic , fading memory, stability , Liapunov function,

dynamical system .
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1. Introduction

In this paper we study a boundary-initial value problem describing the

motions of an incompressible simp le fluid with fading memory , assuming a

“finite-linear” constitutive equation as formulated by Coleman and Noll (1961),

(1964). Stability results for linearized versions of this problem have been

obtained by Cra ik (1968) and Joseph (1974) , who emp loyed spectral analysis

for this purpose ; more recently, Slemrod (1976), (1978) has performed a

stability analysis for one such linearized problem by using the ideas of

dynamical systems theory. We refer the reader to Slemrod (1976) for a critique

of the spectral analysis approach.

Here we are primarily interested in the highly nonlinear equations of

motion which result from a careful formulation of the general problem described

above , emp loying Ofli~ phys icall y reasonable assu~ptious. OuL must. importanc

assumption is that these nonlinear equations do lead to a dynamical system

on an appropriate state space, and we motivate this assumption by also studying

a linearized version of the problem. Although our linearized problem is

closely related to the linear problem considered by Slemrod (1976), (1978),we

are able to show that certain of the stability results for our linearized problem

do carry over to the original nonlinear problem, whereas those of Slemrod (1976),

(1978) , Cra ik (1968) , and Joseph (1974) apparently do not. Our approach

here is based en tirely on the ideas of dynamical systems theory.

In §2 we formulate the basic equations of motion for a simple incompressible

f lu id, based on the “finite-linear ” viscoelastic constitutive equation of

Coleman and Noll (1961). Assuming that for all time t � 0 (but not t < 0) the

fluid is incompressible and fills a fixed bounded container , we obtain a

— 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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formal boundary-initial value problem with history dependence of possibly

infinite duration. Choosing a state space equipped with a “fading memory”

norm (see Coleman and Nizel (1966)), we view the formal problem as an abstract

evolution equation on this space ; tractability of this problem seems to be highly

dependent on selection of the appropriate state space.

As we are unable to prove that our nonlinear evolution equation leads

to a dynamical system, we consider a linearized version in ~3. There we show

that this linear evolution equation does lead to a dynamical system (on the

same space), and we obtain certain results on stability, asymptotic stability,

and exponential decay of motions . Although our linear problem is closely

related to those of Craik (1968), Joseph (1974) , a~id Slemrod (1976), (1978),

we make fewer assumptions regarding the deformation history. Finally, in §4

we assume that, in a certain sense, the original nonlinear problem is related

to a dynamical system ; we then are able to prove that the rest condition is

stable and every motion is bounded in terms of the initial state of the fluid.

Our results are obtained through the use of a Liapunov function (see Hale (1969))

which we interpret as a mechanical energy function for the fluid.

— .-. — ~~— --— - - - - -
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2. Formulation of the Problem

We consider an incompressible simp le fluid occupying a bounded domain

with C
1
-smooth boundary F, for all time tE~7 [O ,°’). Following the

development of No ll (1958) and Coleman and Noll (1961), (1964) ,  we formulate

in this section a set of nonlinear equations of motion based on the “finite-

linear” viscoe lastic theory.

For this purpose , consider an arbitrary fluid particle that has position

= ~~~~~~~~~~~~ ~~ at time tEe, letting X( T ; T~ t) = (x1, X2, x3) E~%
3 

and

p(1 ;Tj,t) E R + denote its position and mass density, respectively,  at time TER

(note that t � 0 but 1 may be negative). The relative deformation gradient

F(T;T~,t) is the second order tensor whose components are given by

f .1Cr ; Tl, t)  ~ .X~ (T ; Th t ) ~ where 
~~~

. 

~~~~~

— . It is known that

(2.1) p(t;11,t) = p(T;fl,t) det F(T;11,t)

for all (T ,~~, t) E~ X ~) X

Following Coleman and Noll (1961) , we denote by C( T ; T1, t ) the relative

right Cauchy-Green tensor with components c
ii ~ki~kj

• Here and in

the seque l we emp loy the convention of summation on repeated indices. Under

the assumption of isotropy and homogeneity (see Coleman and Noll (1961), (1964)),

the basic constitutive equations of the “finite-linear” theory of viscoelasticity

state that, for a compressible simp le f l uid, the components of the stress

tensor S(T~,t) are given by

s~ 1
(1~, t ) - (P(t; 1~,t)) + S~~(3 ,p( t ; ~, t )) Ec

kk
( t - 5 ;~, t ) o

kk Jds} o~

- $0
;s ,~~t ;~, t~~cc~1 t - s; 11,t) - 6~ 1

]ds , (11, t) E C ~ X R~

_ _ _ _  _ _ _ _
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where denotes the Kronecke r de lta and p, Ii , rn are scalar-valued material

functions (see equation 5.18 in Coleman and Noll (1961)). Here we assume

the fluid to be incompressible for ¶ ER.+; hence , the density is constant and

we set p(T;T1,t) 1 for ¶ER.+, ~~~ tER+, without loss of generality. Under

this assumption the above expression for stress must be rep laced by

(2.2) sj~(~~t) = - p(~ ,t)ô .1 j
0

m(s~~c1~ (t - s;~~,t) - ô~~.Jds , (T~,t) EQ X

where p(I1,t) is a constitutively indeterminate quantity and in : -. It is a

material function. We assume that this function satisfies the following

conditions :

a) mEC
1
(~~ ) fl £~ (It~) ,

(2.3) b) rn is nonnegative and nonincreasing on

c) rn(s) > 0  for sE[0,r ) ;  rn (s) = 0 for s~~[O,r)

where r > 0 may be infinite . This mild assumption follows from the concept

of “fading memory” as stated by Coleman and Noll (1961).

We remark that the validity of equation (2.2) depends on the assumption

of incompressibility for ¶E It~ , but does not presume incompressibility for

¶ < 0. Furthermore , we note that, by equation (2.1), the assumption

p(~r;fl,t) 1 for ¶ER+ implies tha t

det F(1;TLt) — 1/p (T ;T1,t) , ¶E~
(2.4)

det F(T:11,t) — 1 , ¶ER+

for all (Tt,t) E Q x

I

- -— ~~~~~~~~~~ -- --
~~~ ~~~~~~~~~~~~~~~~~~~~~~ -
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We assume the fluid container to be fixed in some inertial system , and that

all particle positions are measured relative to this inertial system. We also

assume the body force (per unit mass) at (T~,t) to be the gradient ~~q(Tl,t) of

a known external potential q : Q X -. ~t. Consequently, the balance law

for linear momentum takes the form

(2.5) —i X.(r;1~,t) = ~~q(T~,t) ÷ à .s. .(T~,t) , (1~,t) EQ X
1 

T t  .3 13

It is convenient to introduce some new notation; let

v(1~,t) 
~~

(2.6)

u(s,Tt,t) E X(t — s;T1,t) — X(t;11,t) = X(t — s;T1,t) —

for all (s,TLt) EIt+ X Q X  It+ . For a particle with position T1EQ at time

v(T1,t) represents its velocity at time t and u(s,T~,t) + 1~ its position at

time t - s ~ t. Some straightforward manipulations show that

(2.7) 
~~~ 

X~(T;~~,t)~ = v
1
(~,t)a.v1(~,t) + v.(~ ,t)

(2.8) ~~ u1(s ,Tt,
t) = — ~1clLt) [o~1 + 31u~(s~11~t)J — u~ (s~lLt)

(2.9) u .(0,T~,t) 0 , ~~
— u .(s,1L,t)~ = — v . (11 , t)

(2.10) c~1
(t— s; 11~t)— ~~ 

— f
ki
(t S;T

~
,t)fkj

(t s;l~,t) 
—

= 
~i
u
k(s,~~

,t) 
~J
u
k(s,

i
~
,t) ÷ a1u1

(s ,T1,t) + ô
1
u .(s,11,t)

for all (s ,~~,t) ER
+ X Q X I(~ . Since the first of (2.9) imp lies ~1

u~ (0~TLt) = 0,

rela tion (2.4) leads to the condition
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detI~ 1
u .(s ,TLt) ÷ o . J  = det~~ .u .(O ,T1,t) ÷

= detlo . .1 = 1 ,
13

for all t � s � 0, T~EQ ; hence , we also have

(2.11) 0 = (~ 
det

~~j
u
i

(s ,
~~
,t) ÷ o .~I)~~ = ~~~ ~~~~~~~~~~ 

L=0

= - 
~~~~~~~~~~~~~ , (T~,t) E Q X

where we have used the second of (2.9).

Upon collecting (2.2), (2.3’ , (2.5)-(2.ll) , and making a final physical

assumption that the velocity of the fluid is zero at the boundary F, the

fluid motion is seen to be described by the formal evolution equations

(2.12) v .(~1,t) = - v . (11, t )~~ 1
v . (11, t) - ~ .p (1~,t) + ~.q(l~,t)

- 

~j S
m (s)C

~~
.uk(s,

~~
,t) 

~~k
(s,

~~
,t) +

÷ ~ .u~ (s~ 1~,t)Jds , ~ EQ

(2.13) u.(s,T~,t) = - v
1
(T1,t)LO ,1 +

- 
~~

— u~ (s ,I~,t) , (s,fl) ER~ ~ Q

subject to

~~v~ (Tt~t) 0 TIEQ

(2.14) u~ (0~1~ t) - 0 — vi(l
~
,t) + ~~~~ ~~~~~~~~~ ,

s0

— o , ~f l Er
for al l. tEK+, with prescr ibed initial data (vj(1

~
,O ) , u

i
(s ,T

~
,O)) satisfying (2.14).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- -
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The unknown pressure gradient in (2.12) creates certain difficulties , and

we now emp loy a well known device for removing this term (see Fujita and Kato

(1964)). Consider the Hu bert space (2
2

(Q) ) 3, equipped with the usual inner

product , and le t 11:  (C
2

(Q) ) 3 -. (C 2 (Q) ) 3 be the orthogonal projection whose

range It(ll) is the closure in (C
2

(Q) ) 3 of CE(C (Q))3~~ .v .(Tl) = 0, flE Q).

The range of fl is orthogonal to the closure of the set of elements of

which are gradients of scalar-valued functions. Writing fl as a symmetric

second order tensor TT • •  and app lying it to (2.12), we find that

(2.15) v .CT1,t) = - Tt.
~,v . ( T

~
,t)

~~
.vLCfl,t)

- n
j1,~~

1 S
m (s)

~ 
u.~(s,ll,t) J

u
k

(s ,
~
],t) •u2(s,

1~,t)Jds , ~ EQ

Once a solution (v,u) of equations (2.13)-(2.l5) is found , the corresponding

pressure gradient ~ .p( l~,t) can be recovered through equation (2.12), or

through the equation obtained by app lying the projection I- f l  to (2.12).

We wish to emphasize two points about our physical assumptions.

It should be noted that conditions (2.14) do not require the fluid to

have always occupied the domain Q in the past; i.e., for s > t � 0, we

have not assumed that

u(s,Tt,t) + T~EQ , TLEQ

(2. 16)
u(s,l1,t) — 0 , flEF

Secondly, conditions (2.14) do not require the fluid to have always been

incompressible in the past; i.e., for s > t ~ 0, we have ~~~ assumed that

-— ~~~—--— —-------.
‘ ____________
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(2.17) det1~~.u .(s,~fl,t) ± ô . . 1  = 1 , TI EQ

It is apparent that at least the first of these non-assumptions is physically

important .

We now wish to put (2.l3)-(2.15) in the form of an abstracc evolution

equation on an appropriate state space . For this purpose , first consider

the linear space S of pairs (v,u) in (C~ (Q))
3 

x U (P~)
3 

, where
0 < $ < r

a 
~wEC~ (E0 ,r) X ?~)Iw(s ,fl) = 0 for (s,Ti) E [~ ,r) ~

such that vER(fl) and u(0,Tt) = 0 v(11) + 
~~

— u(s,TD~ for all T~I EQ . Recalling

conditions (2.3) on rn(s), where r > 0 might be infinite , we define

II (v,u)l~~ 
a 
${v i(~ )v .(~) + S~~

(5)
~ ku i (5 ,~

) ku i (s ,~~~s} dQ

and we let I denote the Hu bert space obtained by jI .~l~- completion of S.
Al so , for x = (v,u) ES we define

Nx (w,z)

(2.18) w~ (T1) 
a -

- n~~~ • $rm(s) [~~u (s~~).~~u(s 1~) + ~J
u
L
(s,TDJds

zi
(s ,T

~
) - v

~(11) [o~ + ~ .u .(s~ ID~ 
- f u.(s,11) ,

and we consider a metric on S defined by dN
(x ,

~
) a - + LINx - N~ II 1, x ,~ ES .

We denote by &(N) the d
N 

- completion of 5, and we let N : (~ (N) ~ I) -. I be the

operator defined on £(N) by (2.18). Clearly, ~(N) is dense in I, and the

comple teness of (
~

(N) ,d
N
) implies that N is closed as a (nonlinear) mapping

from I to I.

- 

~~~~~i i ~~~~
- ~~~~

_ _ •_ ._~}i~~~~~~~~ 
-

~~~~~~~~~~~~~~~
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Within this setting we can rep lace (2.l3)-(2.15) by an abstract evolution

equation on I, given by

~c(t) Nx(t) a.e. tER~
(2.19)

x(0) = x E I

This highly nonlinear evolution equation is very difficult to analyze , even

as to existence and uniqueness of solutions . However , for x = 0, we notice

that equation (2.19) does admit as a solution the rest condition , x(t) = 0

for all t E It+. In the following section we study a linearized version of this

equation and show that it leads to a stable linear dynamical system on I.

— .~~~~~~~~ - — - — ~~~— 
~~~~~~~~~~~~~~~~~~~~~



3. A Linearized Problem

We are unable to prove that the nonlinear abstract evolution equation

(2.19) is related to any dynamical system (see Hale (1969)); in ~4 we will simp ly

assume that such a relationshi p does exist. To suggest the plausibility of

this forthcoming assumption , we now perform an appropriate linearization

of (2.19) (on the same Hu bert space I) and show that the resulting abstract

evolution equation does lead to a (linear) dynamical system on I. We remark

that this Hilbert space is different from the one used by Slemrod (1976), (1978)

for a similar but not identical linear problem.

Our first step is to return to the formal equations (2.13)-(2.15) arid

delete all nonlinear terms ; hence , conditions (2.14) are retained , while

(2.15) and (2.13) are rep laced by

(3.1) v.(~ ,t) = - 

~~~~~~~~~ S
m(s)

~~
.uL(s,91,t)ds , 1~EQ

(3.2) u .(s,l~,t) = - v .(l~,t) - ~~
— u .(s,~~,t) , (s,~ ) ~~~ 

X C2

for all tER+. We continue to assume that in(s) satisfies conditions (2.3).

Recalling the linear space S and the Hilbert space I define d in Section II,

we define , for x = (v , u) ES ,

Ax a (w ,z)

(3.3) w,(T~ - ~~~~~~~ S0
m s ~~ u~(s ,~~ds

z(s ,Tl) a - v~ (fl) - .
~~

— u.(s,T~)

—

~~~~~~
---

~----- 
1_’,p

_
~~

______ _ 
- -

~~ 

—---- -
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and we consider a norm on S defined by 
~
IX
~A 

ix~~1 + ~lAx~j1, xES . We denote

by £(A) the 11 A 
- comp letion of 3, and we let A : (~ (A) CI) * I be the linear

operator defined on ~(A) by (3.3). We see that £(A) is dense in I and A is

closed as a linear mapping from I to I.

The formal linear problem (3.1), (3.2), (2.14) leads us to consider

a linear abstrac t evolution equation defined in the Hilbert space I by

~ (t) = Ax(t) , tER~
(3.4)

x(0) = x E ~~(A)CX

We wish to show that (3.4) is related to a linear dynamical system on I, and

that the motions of this dynamical system are (unique) solutions of (3.4)

for x E ~~(A).

We recall (see Hale (1969), Yosida (1978)) that a dynamical system

on a metric space I, is a family of continuous operators

T(t) : I — I such that T(.)x : ~~ I is continuous , T( 0)x x , and

T(t+h)x = T(t)T(h)x, for all t,hE~~~, xEI. The mapp ing T(•)x :It+ I and

the set Y(x) a U T(t)x are called , respective ly, the motion and the positive
t �

orbit corresponding to the initial state xEI. A subset (~CI is said to be

positive invariant under 
~
T(t))

~~~o 
if ~i~(x)C~ for every xE (~. A motion T(.)x

is said to be stable if , given any c > 0, there exists a neighborhood ~t0
(x)

of radius 6 > 0 such that y €~L(x) implies T(t)y €tt~ (T(t)x) for all

T(~ )x is asymptotically stable if it is stable and T(t)y — T(t)x as t -

for all y in some ne 1 ghborhood of x. Furthermore , we recall that tT(t))
~~�0

is called a linear dynamical syster.i if I is a Banach space and T(t) : I —. I is

a linear operator for every t EIt
+
; the infinitesimal generator B : (~ (B) 

CI) — I

of such a linear dynamical sy-~tem is defined by

_ _ _ _ _ _ _ _  
-
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Bx a u r n  ~ ~T(t)x-x 3

~~~ 0

where ~(B) is the set of xEI such that this limit exists. If B is the

infinitesimal generator of the linear dynamical system IT(t))
~~~0 

defined

on I, then for every x
0
E~~(B) the motion T(.)x0 

is the unique strong solution

of the equation ~ (t)  = Bx( t) ,  t � 0, for the initial state x(0) = x .

With this terminology, we can prove the following result for our linear

abstrac t evolution equation (3.4).

Theorem 3.1: For rn(s) satisfying (2.3), the linear operator A: (~ (A)CI) — I

is the infinitesimal generator of a linear dynamical system 
~
T(t))

~~�0 
on I,

with IIT(t)x~I1 ~ jx~j1 for all tER~ , xEI.

Proof: As £(A) is dense in I, for the theorem to be proven it is sufficient

(see Yosida (1978)) to show that -A is II l ~1- accretive arid that the range

It(I - A) = I. Using the natural inner product for I, and considering arbitrary

x = (u , v) E~~(A), we see that

(x ,Ax) = - $ v ~
(i )

~~
i
~~,

a
1 
$r1n(s)~ j

uL(s,1Dds
dQ

- S j~m(s )~ ku ( s , 1D.
~ k[v . cfl) + 

~~
— u~ (s ,11)Jds dQ

= - ~ ~~~~~~~~~ 

~r 
(s,~ )ds dQ

V
Q

r r r
- v (fl) .

~ m ( s ) ~ u .(s,T~)ds dQ.~~~k i  
,;
~

- 1$ 
~~~~~ L u ~~~~~~ u.(s,~ )Jds dQ

2 ~s k i k i

~ 
$$

r 
)
~~~~~

(
~~~~~~~~~~~ Ti Q ~ 0 ;

hence , -A is accretive.

- — 

~~~~~~~fr ~
.-~
--- —
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As -A is accretive , it follows that I-A possesses a bounded inverse

defined on R (I -A). As A is a closed operator , it follows that (I -A)
1 is

closed and bounded; hence, R(I - A) = I if R(I - A) is dense in ~~ . With this

in mind, let (w ,z) be a fixed but arbitrary element of the dense set 3d ,

and consider the equations

v .( T ~ ÷ 
~~~~~~~~ 

1
r

m ( s ) . ~~~. uL
(s , Tt) ds = w.(1~)

(3.5)

u .( s ,l1) + v( l~) ÷ u~~(s , T~) = z.(s,TD

If these equations can be shown to have a solution (v,u) belonging to ~ (A)

we will have shown that It(I - A) ~~S, and by the denseness of S in I it will

follow that K(I -A) = I. Formally, the second of equations (3.5) implies that

(3.6) u.(s,1~) = - (l-e
5)v .(1D + e~~ $~e~ z (~ ,1))d~3. 1 o

hence, u . (O ,TI) = 0 and f u.(s,T~) Ls0  
= - v .(I~) for all 1)EQ. Defining

~~~~

(3.7) ¶ S
a w~(11) 

- T
ie J

m (s)e~~~j 1e~
z
2(~

,TDd
~~
ds

we note that ~ EIt(fl) fl (C(Q))
3
, and (2.3) implies that 0 < o~ < ~~~. using

(3.6) and (3.7), the first of equations (3.5) becomes

.1

(3.8) v .(T ~) - 

~~~~~~~~~~~~ 
— ~CPt) .

I
1
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It follows from elliptic theory (see Mizohata (1973)) that (3.8) admits a

solutthn vEIt (fl) fl(C~ (Q) ) 3 such that v .(T~) = 0 for 11EF; inserting this v

in (3.6) we see that uE(C (~O,r) X Q)) . If r < ~ , we now can conclude that

(v ,u) E~~(A) . If r = ~ , let 0 < ~ ~ and note that, by (3.5) and through

the same argument used in proving that -A was accretive ,

~ ${w~
(~)wj(~) + ~~~~~~~~~~~~~~~~~~~~~~~~~~ dQ

� $ {vi~~~v i~~ ) + ~~~~~~~~~~~~~~~~~~~~~~~~~~ dQ

+ SQ{~i~~j ~~~~~~~~~~~~~~~~~~~~~ ~~
m(s)

~~
u
k

(s ,
~~

ds

+ i~ m(s)~~ . [v~~
(T

~ 
+ 

~~

_ u .(s,1D] •
~~~~

. [v .~ i~ + ~~
— u .(s,T~]ds~~dQ .

Letting ~ 
-. r = ~ , we see that (u,v) €~~(A) , with ~ku ,v)~~~~ + 11A(u ,v)~~ 

� Ik w , z)

Hence, for any r E (O,coJ , we have shown that (3.5) has a solution (v ,u) € £(A)

for every (w,z) ES, and thus we conc lude that R(I - A) = I. The proof is complete.

Theorem 3.1 shows that our abstract linear evolution equation (3.4) has

a unique solution for every x E ~~(A). Furthermore, as the dynamical system

is linear, this theorem implies that all positive orbits are bounded

and every motion is stable.

For r < ~ the injection ~~~~~~~~~~ 
is compact, and it follows that

(I-A)~~ is a compact operator. Hence, if r < ~ , we may now conclude that

all pos itive orbits are precompac t (see Dafermos and Slemrod (1973)), and

this fact enables us to prove the following result.

- 
. 

H,

~ 

— -



15

Theorem 3.2: For m(s) satisfying (2.3) with r < ~ , every motion of (T(t))~~�0

is asymptotically stable .

Proof: Defining V : I -. It as V (x) = (x ,x) , and defining ~‘ : I — It by

a Urn inf ~ ~V(T(t)x) -V(x)~ , xEI
t ’~0

we see that ‘~‘(x) — 2(x,Ax) for xE~~(A); therefore , our accretivity argument shows

that

r rr
V(x)  — ! J m ’(s).~ u (s,TI).~ u (s,T1)dsdC~ ~ - W(x) � 0

k i  k i

for all x — (v,u) €~~(A). By Theorem 3.9 of Walker (1976), it follows that

T(x)~~ ..W (x) � 0 for all xEI.~ Hence, V is a Liapunov function on I (see Hale (1969)).

Conditions (2.3) on rn(s) imply that m ’( s) < 0 for all s in some nonempty

open set ~9C (O,r); consequently,

CxE IlV x) - o}c {(v,u) €115 ~k
U (s,

~
)
~~k

u
i
(s ,l

~
)dQ _  0 a.e. s € c ~}

Using equation (3.4), it is not difficult to see that the largest positive

invariant subset of (xEX I ~’(x) — 0) is — to). As all posi t ive orbi ts

are p recompac t , LaSalle ’s Invariance Princ ip le (see Hale (1969)) now implies

that T(t)x -‘ 0 as t -, ~ , for every xEI ; hence , x — 0 is an asymptotically

stable equilibrium . By the linearity of the dynamical sys tem, it follows that

all motions are asymptoticall y stable , and the proof is comp lete.

In two recent papers Slemrod (1976) , (1978) has used similar methods to

study a problem very closel y rela ted to our formal linear problem (3.1), (3.2),
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(2.14). Rather than using the pair (v,u) to represent the state of the system ,

Slemrod chose the pair 
(~~, 

- ~~ ~~). He also placed additiona l restrictions

on the history corresponding to (2.16) and a linearization of (2.17), namely

u(s,TD + TIE~~ , (s,~ ) ee~ x ~
(3.9) u(s,II.) — 0 , (s,T~) ER~ X F

b~u.(s~T1) 0 , (s ,l~) €It~ x C)

These conditions require the “linearized fluid” to have always occupied the

container and to have always been incompressible . Using a different space

and topology , Slemrod (1976) was then able to prove that his formal equations

led to a stable linear dynamical system , paralleling our Theorem 3.1. He

also obtained an asymptotic stability result under the additional assumption

2
that J s m(s)ds < ~~, which does not presume a finite memory length r. Our

0
Theorem 3.2 assumes r < ~~, but does not require the additional assumption (3.9).

Under further assumptions on the behavior of the material function rn(s),

Slemrod (1978) proved an exponential stability result. We will now present

a result on exponential decay, in our topology, for those initial

states in I that happen to satisfy (3.9). To this end, let q denote the
ll .~l1- cotnpletion of the set [(v,u) ESj (3.9) holds).

Theorem 3.3: Let tn(s) satisfy (2.3) and let there exist 
~2 

~ 
~~~ . 

> 0 such that

11
rn(s) ~ - ui’(s)  ~ ~2

m(s) for all sE [0,r)

Then there exis t M > 0, e > 0 , such tha t 
~IT(t)xII1 ~ Me ~~11 x1I 1 for all

tE R ~, xEQ .

.~~~~ ~~~~- —-- — - -—--- —~~~~~~~~~
—-—— - —-  

~~~~~~~~~~~~~~~ 
—-
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Proof: It is not difficult to see that (~ is positive invariant under

i.e., y(x)d(~ for xEq . Defining U :1 -‘ft as

U(x )  a Ijx II ~~+ ~ r v .(l~) ~ m(s)u.(s,1Dds dC) , xEI

where ~ > 0, we find that, for x€q ,

urn inf ~ CU (T(t)x) -U(x) 1
t’~ 0

- 
.) B $ v ~(11) S

0
m ’ (s) u

i
(s ,

~
DdS dQ

+ B 
~ 

( im(s)~ u~ (s~1~)ds)( S
r

~~(S)~~~. U (s ,11)ds~) dC)C) 0 ‘ 0

+

where ~ a ~ rn(s)ds.
0

We wish to show the existence of numbers c
1 
� c

2 
> 0, € > 0 , such that

c
1~Ix~~ 

� U(x)  � c
211x11

2 
and iJ (~) ~ - 2€U(x) for all xEQ . We first notice

that, by Schwarz ’ inequality ,

u (s,~ )ds J 
~~~ 

~ m (s)~ u (s,Tt).~ u (s,1~)ds
0 v 0 j i  j i

Also , for all zE ~~~(C)))~ it is known that

c a (ID a (TD dC) ~ k ~ z.(TD
.
~ a (TD dC)

i 
~C)~~~

’

for some k(C)) < ~ ; hence , for (v ,u) EC~,

____ — - 
-
~~ - 

-: 
-

~~~~ 

- ~-
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2
v .(II)t m ’(s)u1

(s,IDds dC) � J zn ’ (s)v~ (TD v~ (I1)ds dC) . m ’ (s)u~ (s~IDu~ (s1 Il)dsdC~ct0 ‘d o

� m(0)k $v j v
i(IDdC).IS$

m ’(s j
u
i
(s, ~~u .(s~~))ds d~~

� m(0)k~ 
r v.(~ )v .(~~dC).~ $o~~u ~~~~~~ u (s,~ )ds d~2 1 v C )0 i i  i i

where we have applied Schwarz ’ inequality. Similarly,for xEq,

v i(ID$ m (s)ui(s,TDds dC)~ 
� ~k $ v i (~ )v j (ID~ü.~ 1

r
m( s)~ j ui (s ,~ )~~ j ui (s ,~ )ds dC)

It then follows that

1U(x) - hxfl~ I ~ (B~k/2)lIxL~

P

U(x) � - v~ (TD v~ (IDdC)

½ r
+ B(k~2

m (0)) 
~ 

. v~(IDv~ (TD dC)) ( $$rn(s)~ j
u
i

(s ,ID.
~ j

uj(s ,11)ds dC))

- (
~ i

-
~~B )J$

m(s)
~ j

uj(s ,1D.
~ j

u
i
(s,1Dds dC) ,

for all xE (~. Choosing B > 0 so small that Bak < 2 and B(k~2
m(0) + ~a

2
) < 4~~

we see that suitable numbers c1, c2, C do exist. As (~ is posit ye invariant,

it f ollows that U(T (t)x) ~ e
2Ct

U(x) for all tER+, x€~~; hence, we find that

� (c1/c 2)e 25th xlj~ , t Eft ~ , x E~ ,

and the proof is complete. .

_ _ _ _  _  _ _ _ _  _ 
L i__________ ___  _ _ _ _ _ _ _ _ _ _ _  ___  - 

- - -
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In this section our princ ipal purpose was to prove that the linear abstrac t

evolution equation (3.4) generates a dynamical system on I. We have gone

beyond this objective , considering stability properties and exponential decay

of motions , in order to provide a basis for comparison with the related

results of Slemrod (1976), (1978).

________—- - - - _____
-w— —__— — - -- -

.
- 

— -
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4. The Nonlinear Problem

We now return to the nonlinear problem described by the abstrac t evolution

equation (2.19),

(4.1) *(t )  = Nx(t) a.e. tER+

x(0) = x E I

where N is the closed , densely defined operator described in *2. Questions

regarding existence and uniqueness of solutions of (4.1) are quite difficult

to resolve, and we are not able to prove that (4.1) is associated with a

dynamical system on I. However, assuming that it is, we shall show in this

section that all positive orbits are bounded and the equilibrium at x = 0

is stable.

In *3 we showed that linearization of the problem led to a dynamical

system on the Hilbert space I. This suggests that it is plausible to assume

that the nonlinear problem also is associated with a dynamical system on I,

in the following sense . -

Assumption 4.1: For all suf f iciently small X >  0 , f t ( I  - XN ) = I and a (I -

exists ; moreover , with ~ I , there exists a dynamical sys tem t S ( t ) )
~~�0 on I

such that ~~~~~ — S ( t ) x  as n for every x El , t E R + , the convergence being

uniform on compact subsets of It

This particular association between the dynamical system tS(t))
~~�0 

and

the operator N is motivated by considering a backward-difference approximation

of equation (4.1) given by

_ _ _ _  --—~~-—~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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fmt\ (mt t\ t fmt” +x ~— j - x — - — )  = — Nx i~~~~~i , m l,2,...,n ; tE lt
\n/ \.n n/ n \ n /

x(0) = x E I

It is seen that for sufficiently large n, depending on t , this equation has a

solution x(t) = J~,,
x if R.(I - XN) = I and if a (I - XN) 1 exists  for a l l

sufficiently small X > 0. Under Assumption 4.1, J~~,
X is a Hille-type

approximation of S(t)x (see Yosida (1978)).

If wI-N were accretive for some wE ft, then the theory of Crandall and

Liggett (1971) would show that Assumption 4.1 holds if and only if R ( I  - )~N) = I

for all sufficiently small X > 0 (see Yosida (1978)). Unfortunately, wI-N

is not accretive and we are unable to prove the validity of our assumption ,

even if R(I - ).N) = I.

It is remarkable that, under Assumption 4.1, it is easy to prove that

all positive orbits are bounded and the equilibrium at x = 0 is stable.

Theorem 4.2: For in(s) satisfying conditions (2.3), and under Assumption 4.1,

I I S ( t ) x ~1 ~ Ux~Ij  f o r  all tER+, xEI. Furthermore , S(t)x 0 as t — ~ if

the positive orbit q(x) is precompact.

Proof. Defining V(x) E I I x j I ~ and

~ (x) a Urn inf .~~ LV(S(t)x) -V(x)J
t

for xEX , we note that for X > 0 and xE~~(N) ,

— — -
~ 
.——- -w— — - 

- ~~~ 
— 

~~~~~~ 
-.,—- ~~~~~~~~~~ 

- 
-
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V(x - XNx) ~ V (x) - 2X(x,Nx) , -

(x ,Nx)= d~

- 
S 

m(s)
~ k

u .( s ,ID.
~ k{v~

(
~
) + ~~~~~~~~~~ + 

f 
u.(s,T~

} ds d~

= - 
~ S v .(C)) .

~ J{v~~~
)v L(

~~ 
+ S

m(s)
~~k

u i ( s ,
~~

) .
~~k

u i ( s ,
~~~ds} d~

- J A 3 S
m (s)E

~L
u
k

(s ,
~~~~j

u
k(s,~

) ÷

- J C) k J  j i  k i  
+ 

~k
u
j ,~~)Jds dC)

- 
1 

~~ k
u
i
(5,ID

~~ k
ui , ~~~

d5 dC)

= ~ $
J.r 1~~~~~~( 11)d C) a - W (x) � 0

As £(N) is dense and Assumption 4.1 is made , Theorem 3.4 of Walker (1979)

shows that ‘~‘(x) � - W( x ) ~ 0 for all xEI; consequently, V(S( t)x)  ~ V(x) for

all t E I t+ , x E l . As in the proof of Theorem 3.2 , we also see that the largest

+ . I~ I + ( -
~positive invariant set ir~ in IXEIIV(x) — Oj is tfl = 10); hence , if x is

such that y(x) is precompact, LaSalle ’s Invariance Princip le (see Hale (1969))

implies that S(t)x -‘ 0 as t -. ~~. The proof is complete.

Theorem 4.2 shows that all positive orbits are bounded and the equilibrium

at x — 0 is stable . If all positive orbits could be shown to be precoinpact ,

Theorem 4.2 would imp ly that x — 0 is globally asymptotically stable.

Although we do not know that all positive orbits are precompac t, the last result

_ _ _ _  
___ -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of Theorem 4.2 does show that there exist no equilibria (steady flows) other

than x = 0 (the rest condition), and it also shows that there are no nontrivial

periodic motions (nonsteady periodic f l ows ) .

We remark that the function V (x) a ~~~ used in the proof of the foregoing

theorem is a Liapunov function for tS(t))
~~�0 

(see Hale (1969) and Walker (1979)).

Useful Liapunov functions often are extreme ly difficult to discover for a

highly nonlinear problem , and discovery of a topology suitable for a state

space may be even more difficult. In fact, these difficulties are so inter-

related (see Walker (1976)) that a “formal” Liapunov function (for the formal

equation) often is sought a priori , as a means of suggesting a suitable

topology for the state space. This is what led us to set equation (4.1) and

Assumption 4.1 in the particular Hu bert space I, rather than in any other

metric space .

The function V is the only Liapunov function that we have been able to

find for the nonlinear problem. This is in contrast with the linearized

problem of *2, which admits an infinite family of useful Liapunov functions ,

and leads to a corresponding family of linear dynamical systems on state

spaces differing in their topologies. The linear dynamical system and

Liapunov function of Slemrod (1976) belong to this family, which can

be defined in terms of the set of linear operators that commute with the

linear operator A of (3.3). However , among all of the functions in this

family, it appears that only the function V employed here is useful with the

original nonlinear problem.

Our Liapunov function V admits a simp le physical interpretation. To

demonstrate this point most clearly, we return to the formal problem of §2 and

relax cer ta in  of our assumptions . Rather than assuming that v
i(

’fl,t) = 0 for

--~~~~ 
-----

~
-—-

~~~~~~~~~~
-

~~~~~
——--

-——

— 
- ---
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(‘fl,t) EF x ft+, let us assume only that fluid can not cross the boundary F of C);

that is, v .(T1,t)n .Cfl) = 0 for (T1,t) EF X I~~, where n(~) denotes the unit

outward normal to F. Let us also consider a general body force field

rather than one derived from a potential q(T~,t). If we retain all other

assump t i~ons of §2, formal computations lead to

d
V(x(t) = j $ m ’ (s)

~k
u i(s ,

~~
,t>

~k
u i(s ,

~~
,t)ds d~ ÷ 2P(t)

� 2P (t) , tER+

where P(t) is the external power,

P(t) a SC)
f i ,t i i ,t)dC)+ j

r
f
h 5

ij~~~
t)
~~~~~

t
~~~

Consequently, we see that V has the basic property of a “mechanical energy

function” for the fluid. When all assumptions of ~2 are app lied ,

p (t) = 0 and f V(x(t)) 
� 0 for all t. ER 7.

The assumption of “fading memory” p layed a crucial role in our analysis;

however , we remark that conditions (2.3) can be slightl y weakened . It is not

difficult to see that we do not actually need mEC
]

(ft+) and , except for Theorem 3.3,

all of our theorems continue to hold if conditions (2.3) are rep laced by

+ r 
-a) m It -, It is integrable , with 0 < J m (s)ds <

0

(4.2) b) m is nonnegative and nonincreasing on

c) rn(s) > 0  for s€ [0 ,r) ; rn(s) = 0 for s~~(0,r)

where r > 0 may be infinite.

____ 
_ _ _  

\~~— -



25
I

References

Coleman, B. D., and V. J. Mizel, Norms and semigroups in the theory of fading
memory. Arch. Rational Mech. Anal. 23 (1966), 87-123.

Coleman , B. D., and W . Noll , Foundations of linear viscoelasticity. Rev . Mod.
Phys . 33 (1961), 239-249.

Coleman , B. D., and W. Noll , Simp le fluids with fading memory. Proceedings of
the international symposium on second-order effects in elasticity,
plasticity, and fluid dynamics., Haifa, Israel. Oxford , Paris , New York:
Pergaxnon Press , 1964.

Craik , A. D., A note on the static stability of an elastoviscous fluid. J. Fluid
Mech. 33 (1968), 33-38.

Crandall , M. G., and T. M. Liggett , Generation of semigroups of nonlinear
transformations on general Banach spaces. Amer. J. Math. 93 (1971), 265-298.

Dafermos , C. M ., and N. Slenirod , Asymptotic behavior of nonlinear contraction
semigroups. J. Furict. Anal. 13 (1973), 97-106.

Fujita, H., and T. Kato, On the Navier-Stokes initial value problem . Arch .
Rational Nech. Anal. 16 (1964), 269-315.

Hal e , J. K.,, Dynamical systems and stability. 3. Math . Anal. Appi. 26 (1969), 39-59.

Joseph, D. D., Slow motion and viscometric motion; stability and bifurcation
of the rest state of a simp le fluid. Arch. Rational Mech . Anal. 56 (1974),
99-157.

Mizohata , S., The theory of partial differential equations . London , New York:
Cambridge U. Press (1973). -

Noll , W., A mathematical theory of the mechanical behavior of continuous media.
Arch . Rational Mech. Anal. 2 (1958), 197-226.

Sletnrod , N., A hereditary partial differential equation with applications in
the theory of simple fluids . Arch . Rational Mech. Anal. 62 (1976), 303-321.

Slemrod , M., An energy stability method for simple fluids . Arch. Rational Mech.
Anal. (1978), forthcoming.

Walker , J. A., On the application of Liapunov ’s Direct Method to linear dynamical
systems. 3. Math. Anal. Appi. 53 (1976), 187-220.

Walker , J. A., Some results on Liapunov functions and generated dynamical systems .
J. Diff. Eq. (1979), forthcoming.

Yos ida , K., Functional analysis, New York: Springer-Verlag (1978).

78 09 29 9~~8


